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Abstract

It has been demonstrated that classical probabilities, and in
particular, probabilistic Turing machine, can be simulated by
combining chaos and non-Lipschitz  dynamics, without utilization
of any man-made devices (such as random number generators).
Self-organizing properties of systems coupling simulated and
calculated probabilities and their link to quantum computations are
discussed.

Classical dynamics is fully deterministic if initial conditions are known

exactly. Otherwise in some non-linear systems, small initial errors may grow

exponentially so that the system behavior attains stochastic-like features, and

such a behavior is called chaotic. The discovery of chaos contributeci  in better

understanding of irreversibility in dynamics, of evolution in nature, and in

interpretation and modelling of complex phenomena in physics and biology.

However, there is a class of phenomena which cannot be represented by chaos

directly. This class includes so called discrete events dynamics where

randomness appears as point events, i.e., there is a sequence of random

occurrences at fixed or random times, but there is no additional component of

uncertainty between these times. The simplest example of such a phenomenon

is a heartbeat dynamics which, in the first approximation, can be modelled by a

sequence of pulses of equal heights and durations, but the durations of the

pauses between these pulses are randomly distributed, Most processes of this

type are associated with intellectual activities such as optimal behavior,

decision making process, games, etc. In general, discrete events dynamics is
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characterized by a well-defined probabilistic structure of a piecewise-

deterministic Markov chains, and it can be represented by probabilistic Turing

machine. On the contrary, a probabilistic structure of chaos, and even the

appearance of chaos at all, cannot be predicted based only upon the

underlying model without actual numerical runs. (The last statement can be

linked to the Richardson’s [11 proof that the theory of elementary functions in

classical analysis is undecidable). But is there a “missing link” between chaos

and discrete events dynamics? And if it is, can this link be simulated based only

upon physical laws without exploiting any man-made devices such as random

number generators? A positive answer to this question would make a

fundamental contribution to the reductionists view on intrinsic unity of science

that all natural phenomena are reducable  to physical laws. However, in

addition to this philosophical aspect, there is a computational advantage in

exploiting simulated probabilities instead of calculated ones in the probabilistic

Turing machine: as shown by R. Feynman [A, the exponential complexity of

algorithms in terms of calculated probabilities can be reduced to polynomial

complexity in terms of simulated probabilities.

In this paper we demonstrate that the missing link between chaos and a

discrete event process can be represented by non-Lipschitz dynamics. [3-51

In order to illustrate the basic concepts of non-Lipschitz dynamics,

consider a rectilinear motion of a particle of unit mass driven by a non-Lipschitz

force:

L = vd’3sinut, v = C(mst, [V]=fl
see s’3

●

X=v
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where v and x are the particle velocity and position, respectively.

Subject to the zero initial condition

v= o at t=O

equation (1) has a singular solution

(3)

V=o (4)

and a regular solution

‘=*(%in2T’r2
(5)

These two solutions coexist at t = O, and this is possible because at this

point the Lipschitz  condition fails:

Since

:)0 a t  [vl#O, t)o

(6)

(7)

the singular solution (4) is unstable, and the particle departs from rest following

the solution (5). This solution has two (positive and negative) branches [since

the power in (5) includes the square root], and each branch can be chosen with

the probability p and (1-p) respectively. It should be noticed that as a result of

(5), the motion of the particle can be initiated by infinitesimal disturbances (such
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motion never can occur when the Lipschitz condition holds: an infinitesimal

initial disturbance cannot become finite in finite time).

Strictly speaking, the solution (5) is valid only in the time interval

and at t s 2Z / o it coincides with

For t ) 2z/co  equation (4)

6)

the singular solution

becomes unstable,

(8)

(4)

and the motion repeats

itself to the accuracy of the sign in equation (5).

Hence, the particle velocity v performs oscillations with respect to its

zero value in such a way that the positive and negative branches of the solution

(5) alternate randomly after each period equal to 2z / O.

Turning to equation (2), one obtains the distance between two adjacent

equilibrium position of the particle:

2ZJ6) 4V 312

xi – xi., = *
J(

— s i n :?
)

dt = 64(30 )-S12 V312  =&ho 3U

Thus, the equilibrium positions of the particle are

X. = o, xl = j+> X2 =i-hfh...

(9)

( lo)

while the positive and negative signs randomly alternate with probabilities p

and (1-p), respectively.

A



Obviously, the particle performs an unrestricted random walk: after each

t i m e  p e r i o d

z=%
0.) (11)

it changes its value on i-h [see equation (10)],

The probability density f(x,t) is governed by the following difference

equation:

f(x, t + T)= pf(x - h,t)-1-(1  -p)j-(x + h,t) (12)

which represents a discrete version of the Fokker-Planck equation,

while

J:mf(x,t) dx =  1 (13)

Several comments to the model (1) and its solution have to be made.
,

Firstly, the “viscous” force

F = –Vd’3 (14)

includes static friction (see Eq. 6) which actually causes failure of the Lipschitz

condition. These type of forces are well-known in theory of visco-plasticity M. It

should be noticed that the power lja can be replaced by any power of the type:

~_2n–1_— n = 1,2,... etc
2n+l’

(15)
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with the same final result (12), In particular, by selecting large n, one can make

k close to 1, so that the force (13) will be almost identical to its classical

counterpart

F’c=-vv (16)

everywhere excluding a small neighborhood of the equilibrium point v = O,

while at this point

dF—+., but ~ +0 at .+0
du IA)

(17)

Secondly, without the failure of the Lipschitz  condition (6), the solution to

Eq. (1) could not approach its equilibrium v = O in finite time, and therefore, the

paradigm leading to random walk (12) would not be possible.

Finally, we have to discuss the infinitesimal disturbances mentioned in

connection with the instability of the solutions (5) at v = O. Actually the original

equation should be written in the form:

L = VV113 sinot + E(l), & + O (18)

where c(t) represents a time series sampled from an underlying stochastic

process representing infinitesimal disturbances. It should be emphasized that

this process is not driving the solution of Eq. (18): it only triggers the

mechanism of instability which controls the energy supply via the harmonic

oscillations sirmt. As follows from Eq. (18), the function e(t) can be ignored

when ~ = O or when ~ #O, but the equation is stable, i.e. v= mo,  27ra, . . ..etc.
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However, it becomes significant during the instants of instability when ; = O at

r = O, Z/2@  etc. Indeed, at these instants, the solution to Eq. (1) has a choice to

be positive or negative if z = O, (see eq. (5)). However, with e #O,

signx  =.fign  E at t = O, nfza,...  etc (19)

i.e., the sign of c at the critical instances of time (19) uniquely defines the

evolution of the dynamical system (1 8). Thus, the dynamical system (18)

transforms a stochastic process (via its sample c(t))  into a binary time series

which, in turn, generates a random-walk-paradigm (1 8). Actually the solution to

eq. (18) represents a statistical signature of the stochastic process e .

Within the framework of dynamical formalism, the time series E(Z) can be

generated by a fully deterministic (but chaotic) dynamical system. The simplest

of such system is the logistic map which plays a central role in population

dynamics, chemical kinetics and many other fields, In its chaotic domain

Yn+,  = 4Y.(1  - Y.), y,= 0 . 2 (20)

the power spectrum for the solution is indistinguishable from a white noise.

However, for the better match with Eq. (1 8), we will start with a continuous

version of (20) represented by the following time-delay equation.

y(l + 7) = 4y(t)[l  - y(?)], z=;

y(r”) = 0.2, - ; (t* (;

(21)

(22)
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The solution to Eq. (21) at t=O, x/2@,... etc, coincides with the solution

to Eq. (20), but due to the specially selected initial condition (22), the solution to

Eq, (20) changes its values at t = –z–, -~,..,. etc, so that at the points
40.) 4(Y

t=o, 71/2(.i.),... , the sign of this solution is well-defined.

Now assume that

~(t) = Eo(y(t)  - 0,51), q) (( 1 .

The subtraction from y(t) its mean value provides the condition

p=l -])=;

Indeed, for the first hundred points in (23),

-++-+++––+––+––--––  -++++––+

Sign e =
––++–+–+ ––++--–-- +-+-– –++-+
+ – + + – + + + ––++++++–++++++––+

+ ———— i-+––-+-+------t––––

(23)

(24)

(25)

has equal number of positive and negative values which are practically not

correlated. Therefore, the statistical signature of the chaotic time series (23) is

expressed by the solution to Eqs (12), (13) at p = ~ with the initial conditions

J(O,O)= 1, f(x,O)= O if x # O (26)

which is a symmetric unrestricted random walk:

f(x,t)=  C~2-”; m = ~(n+x);
( )

2(IX
n = integer —

z
(27)



Here the binomial coefficient should be interpreted asO wheneverm is not an

integer inthe interval [0,~1] and n is the total number of steps.

The connection between the solution (26) and the solutions to the system

(18), (21 ), (2) should be understood as follows. Suppose we solve the system

(18), (21 ), (2) subject to the intial condition (22) with v = o and x = o at f = O,

Since Eq. (21) is supersensitive to inevitable errors in (22) the solution will form

an ensemble of chaotic time series, and for any fixed instant of time this

ensemble will have the corresponding probability density distribution which

coincides with (26). In other words, the probabilities described by Eq. (12), are

simulated by the dynamical system (18), (21) and (2) without an explicit source

of stochasticity (while the “hidden” source of stochasticity is in finite precision of

the initial condition (22)).

Combining several dynamical systems of the type (18), (21), (2) and

applying an appropriate change of variables, one can simulate a probabilistic

Turing machine which transfers one state to another with a prescribed

transitional probabilities, [s]. Non-Markovian properties of such a machine can

be incorporated by introducing time-delay terms in Eq. (2).

i= v(l) + a,v(t-zo) + a2v(t–2qJ +. . . . (28)

However, there is a more interesting way to enhance the dynamical

complexity of the system (18), 21), (2). Indeed, let us turn to Eq. (23) and

introduce a feedback from Eq. (2) to Eq. (18) as following:

&=&o(y–  x), co (( 1 (29)
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Then the number of negative (positive) signs in the string (25) will prevail

if x ) O (x ( O) since the effective zero-crossing line moves down (up) away from

the middle. Thus, when (x = O) at t = O, the system starts with an unrestricted

random walk as described above, and 1x1 grows. However, this growth

changes signs in Eq. (23) such that ; ( O ifx ) O, and ~ ) O if x ( 0, As a result

of that

x ~ Ymx, ‘ r e i n  2 Y m i nmax
(30)

where Xma, and yn,i. are the largest and the smallest values in the time series

y (t), respectively. Hence, the dynamical system (18), (23), (2) simulates a

restricted random walk with the boundaries (30) implemented by the dynamical

feedback (29), while the probability

(31)

For the sake of qualitative discussion, assume that p change linearly between

x = ymh and x = y~,z,  i.e.,

x
p = ~y-

In,x - Ymin
(32)

(the actual function p(x) depends upon statistical properties of the underlying

chaotic time series y(t)).
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Then the simulated restricted random walk as a solution to Eqs. (1 2),

(13), (32) subject to the conditions (26) is:

where n and m have the same meaning as in the solution (26).

Let us modify the feedback (29) as

E = Co[y- (x’ -x)] (34)

Now when x=O at t=O, the system is unstable since

Sgn x = .Vgn ;, --(x(+, (35

and the process is divided into two branches. The negative branch (with the

probability 1/2) represent an unrestricted random walk (x+ 00), while the

positive branch (with the same probability x ) is eventually trapped within the

basin of the attractor x = 1 since

“ ;(X(Msgn x = - sgn x, (36)

simulating a restricted random walk as those described by Eq (33) with the only

difference that its center is shifted from x = O to x = 1.
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AS a next step in complexity, introduce the information H associated with

the randc)m  walk process described by [~qs. (12), (13):

H=– Jflog2fdx (37)
-M

and modify the feedback (29) as following:

& = E, [y- X( I +W%,f)] (38)

where –~logz~is  the information per unit step of x.

Following the same line of agrumentation  as those performed for the

feedback (29), one concludes that the feedback (38) becomes active only if the

process is out of the domain of the maximum information, and therefore, it is

always attracted to this domain.

Since Eq. (31) is still valid,

( 3 2 ) :
11 —

we will apply the approximation similiar  to

Jmax X( I + 2flog2 f)
P =

Yma,  -  Ymin
. .

in order to continue our qualitative analysis. It should be noticed that now p

depends not only on x, but also on f, and that makes Eq. (12) nonlinear. In

addition to that, the system (18), (2) and (38), which is simulating probabilities,

is coupled with the system (1 2), (13) and (39) describing the evolution of

calculated probabilities. Actually due to this coupling, the entire dynamical

system attains such a self-organizing property as to maximize the information

generated by the random walk.
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Based upon Eq. (39) one can obtain a formal solution similar to (33) in an

implicit form:

[

– x(]+ 2flog2 j-)
f= c; y“” Ymal _ y ‘-

1[ 1
‘“ X(]+ 2~10g* $)  – y~i~ ‘-m

(40)
mm Y max -  Ymi”

However,

using the

neither uniqueness nor stability of this solution can be proved without

statistical characteristics of the underlying chaotic process y(t).

The self-organizing properties of the system (18), (2), (38), (12), (13) and

(39) mentioned above have a very interesting computational interpretation:

they provide a mutual influence between different branches of probabilistic

scenarios. Such an influence or interference, is exploited in hypothetical

quantum computer [n as a more powerful tool in a complexity theoretic sense,

than classical probabilistic computations. However, in quantum computer, the

interference is restricted to a unitary matrix transformation of probabilities (which

is the only one allowed by quantum mechanics laws), while in the classical

system (18), (2), (38) there is no such restriction; by choosing an appropriate

probabilistic term in the feedback (38), we can provide an optimal interference.

Unfortunately, the price paid for such a property is the necessity to exploit the

calculated probabilities (12), (13) and (39), which, in many cases is a significant

disadvantage.
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